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The nonlinear propagation of ion-acoustic waves in an unmagnetized collisionless degenerate dense
plasma (containing degenerate electron, positron, and ion fluids) has been theoretically investigated.
This fluid model, which is valid for both the non-relativistic and ultra-relativistic limits has been
employed with the reductive perturbation method. The standard Gardner (sG) equation has been
derived, and numerically examined. The dynamics of electrons, positrons and ions on the IA (ion-
acoustic) solitary waves (SWs) and double layers (DLs) that are found to exit in a degenerate dense
plasma by taking the effect of different plasma parameters in the plasma fluid into account. The
relevance of our results in astrophysical objects like white dwarfs and neutron stars, which are of

scientific interest, are briefly discussed.

PACS numbers: 47.75.+f, 52.35.Fp, 52.35.Qz, 52.58.-c, 52.27.Ny

I. INTRODUCTION

The propagation of the ion-acoustic waves are very im-
portant from both the academic point of view and from
the view of its vital role in understanding the electro-
static disturbances in space and laboratory plasma. The
physics of quantum plasmas, rapidly grown beyond con-
ventional plasmas found in space or laboratory for many
years [1, 2]. This is mainly due to the potential appli-
cations of quantum plasmas in different areas of scien-
tific and technological importance [3-6]. It is a common
idea that electron-positron plasmas have presumably ap-
peared in the early universe [7, 8] and are frequently en-
countered in active galactic nuclei [9] and in pulsar mag-
netospheres [10, 11]. This electron-positron plasma is
usually characterized as a fully ionized gas consisting of
electrons and positrons of equal masses. Recently, there
has been a great deal of interest in studying linear as well
as nonlinear wave motions in such plasmas [12, 13]. The
nonlinear studies have been focused on the nonlinear self-
consistent structures [12-14] such as envelope solitons,
vortices, etc. However, most of the astrophysical plas-
mas usually contains ions, in addition to the electrons
and positrons. Clearly, the properties of wave motions in
an electron-positron-ion plasma should be different from
those in two-component electron-positron plasmas. For
example, Rizzato [15] and Berezhiani et al. [16] have in-
vestigated envelope solitons of electromagnetic waves in
three-component electron-positron-ion plasmas.

The electron-positron plasmas are thought to be gen-
erated naturally by pair production in high energy pro-
cesses in the vicinity of several astrophysical objects as
well as produced in laboratory plasmas experiments with
a finite life time [17]. Because of the long life time of the
positrons, most of the astrophysical [18] and laboratory
plasmas become an admixture of electrons, positrons,
and ions. It has also been shown that over a wide range
of parameters, annihilation of electrons and positrons,
which is the analog of recombination in plasma composed
of ions and electrons, is relatively unimportant in clas-

sical, [19] as well as in dense quantum plasmas [20] to
study the collective plasma oscillations. The ultradense
degenerate electron positron plasmas with ions are be-
lieved to be found in compact astrophysical bodies like
neutron stars and the inner layers of white dwarfs [20-
23] as well as in intense laser-matter interaction experi-
ments [24, 25]. Therefore, it seems important to study
the influence of quantum effects on dense e-p-i plasmas.
Several authors have theoretically investigated the col-
lective effects in dense unmagnetized and magnetized e-
p-i quantum plasmas under the assumption of low-phase
velocity (in comparison with electron/positron Fermi ve-
locity) [26-28]. In these studies, the authors have focused
on the lower order quantum corrections appearing in the
well known classical modes.

A dense plasma is usually characterized as cold and
degenerate such as that encountered in metals and semi-
conductors. However, it has been remarked that a hot
fusion plasma such as that found in dense steller objects
(e.g., white dwarfs) may also be considered as quantum
degenerate plsma [1]. In such environments the produc-
tion of positrons is and a degenerate plasma of electron-
positron-ion can be expected. The main objection to the
existence of dense electron-positron-ion plasma may be
high electron-positron annihilation rate which is natu-
rally expected where the electron and positron density
are very high. In a typical white dwarf star the electron
density can be as high as 10*¥e¢m 3, however, for mas-
sive stars [29] such as that for a collapsing white dwarf,
this value can even be much higher [23]. The propaga-
tion and collision of small-amplitude ion-acoustic waves
in ultra relativistic plasma have been already investigated
[30, 31].

Now-a-days, a number of authors have become inter-
ested to study the properties of matter under extreme
conditions [32-35]. Recently, a number of theoretical in-
vestigations have also been made of the nonlinear prop-
agation of electrostatic waves in degenerate quantum
plasma by a number of authors [54-56] etc. However,
these investigations are based on the electron equation
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of state valid for the non-relativistic limit. Some investi-
gations have been made of the nonlinear propagation of
electrostatic waves in a degenerate dense plasma based on
the degenerate electron equation of state valid for ultra-
relativistic limit [36-38].We are interested to study the
dissipasion relation of the ion-acoustic waves in a degen-
erate e-p-i plasma system where we added positrons for
the rather long lifetime of positrons, most of the astro-
physical [9, 11-13, 18, 23, 39, 40] as we have mentioned
in the introductory chapter. The pressure for ion fluid
can be given by the following equation

Pi:Kmf»', (1)
where
5 3 /m\s 7h® 3
a=3 Ki=1(3) o =5hde @

for the non-relativistic limit (where A, = 7hi/mec = 1.2 x
1071% ¢m, and B is the Planck constant divided by 27).
While for the electron fluid,

Pe = Ke”Za (3)
where

v = a; K. = K; for nonrelativistic limit, and (4)

1
2\ 3
7:§; K:%(%) hczghc, (5)
in the ultra-relativistic limit [32-34, 36, 38].

Therefore, in our present investigation, we consider a
degenerate dense plasma system in absence of the mag-
netic field or heavy dust grains, but containing non-
relativistic degenerate cold ion fluid, both non-relativistic
and ultra-relativistic degenerate electrons and positrons
fluid where the ion is the heavier element among all other
elements. The model is relevant to compact interstellar
objects (e. g., white dwarf, neutron star, etc.). Recently,
many authors [1, 36, 38, 43-52], etc. have used the pres-
sure laws (3) to (5) investigate the linear and nonlinear
properties of electrostatic and electromagnetic waves, by
using the non-relativistic quantum hydrodynamic (QHD)
[1] and quantum-magnetohydrodynamic(Q-MHD) [45]
models and by assuming either immobile ions or non-
degenerate uncorrelated mobile ions. Again in this
present days, some authors [54-56] has made a num-
ber of theoretical investigations on the nonlinear prop-
agation of electrostatic waves in degenerate quantum
plasma. Still now, there is no theoretical investigation
has been made to study the extreme condition of mat-
ter for both non-relativistic and ultra-relativistic limits
on the propagation of electrostatic solitary waves (SWs)
and double layers (DLs) in a degenerate dense plasma
system. Therefore, in our paper we have studied the
properties of the SWs and DLs considering a degener-
ate dense plasma containing degenerate electron-ion fluid
(both non-relativistic and ultra-relativistic limits) with
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the degenerate positron to study the basic features of
the electrostatic soliton and double layer structures with
the solutions of standard Gardner equation. Our con-
sidered model is relevant to compact interstellar objects
(i.e. white dwarf, neutron star, black hole, etc.).

II. GOVERNING EQUATIONS

We consider an unmagnetized collisionless three com-
ponent degenerate dense plasma system consisting of
non-relativistic degenerate cold degenerate ion fluid and
both non-relativistic and ultra-relativistic degenerate
electrons and positrons fluids. We assume that the ion is
the heavier element among all other considering elements.
The dynamics of the one dimensional ion-acoustic waves
in such a three component degenerate dense plasma sys-
tem is governed by

Ong 0

Bt + %(nsus) =0, (6)
o G L g O
ne% - Ky %T;Z =0, ®
n 2~ 2% 9)
%g_m%_m_%%, (10)

where n; is the plasma number density of the species s (
s = e for electron, i for ion, and p for positron) normal-
ized by its equilibrium value ns, (neo), us is the plasma
species fluid speed normalized by Ci,, = (mec?/m;)/?
with m, (m;) being the electron (ion) rest mass mass
and ¢ being the speed of light in vacuum, ¢ is the elec-
trostatic wave potential normalized by m.c?/e with e
being the magnitude of the charge of an electron, the
time variable (¢) is normalized by w,; = (4mnge?/m;)/?,
and the space variable (z) is normalized by A, =
(mec? [4mnge?)'/?. The coefficient of viscosity 7 is a nor-
malized quantity given by wi)\fnimsnso, and a, is the
ratio of the number density of electron and ion (n./n;)
and a,is the ratio of the number density of positron and
ion (n,/n;). The constants K; = ny~"K;/m;>C;> and
K2 = nf)klKe/min:ng*le/min.

III. DERIVATION OF K-DV EQUATION

Now we derive a dynamical equation for the nonlinear
propagation of the ion-acoustic solitary waves by using
(6 - 10). To do so, we employ a reductive perturbation
technique to examine electrostatic perturbations propa-
gating in the relativistic degenerate dense plasma due to
the effect of dissipation, we first introduce the stretched
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coordinates [57]
( =€z - Vpt), (11)
= 2, (12)
where V), is the wave phase speed (w/k with w being
angular frequency and k being the wave number of the
perturbation mode), and € is a smallness parameter mea-

suring the weakness of the dispersion (0 < ¢ < 1). We
then expand n;, ne, u;, and ¢, in power series of e:

n; =14+ engl) +e€ n( U (13)

ne =1+enlV) 46 n(2)+ (14)
:1+en(1)+en()+---, (15)

u; = eu(l) + é2u (2) e (16)

¢ = ep* +e¢(2)+---, (17)

p=epM +e2p? .. (18)

(19)

and develop equations in various powers of €. To the

lowest order in €, using equations (11)-(17) into equa-

tions (6) - (10) we get as, ugl) = VoM /(V2 - K}),
n{) ¢“)/0f2 Ky, e = my) = ¢W/K}, and
V \/_ + K1), where K; = n§ ' K;/m;>C;® and

K> = n] 1Ke/mlCl2 = ngfle/miCl

VP = (a —ap
for the ion-acoustic type electrostatic waves in the degen-
erate plasma under consideration.

We are interested in studying the nonlinear propaga-
tion of these dissipative ion-acoustic type electrostatic
waves in a three components degenerate plasma. To the
next higher order in €, we obtain a set of equations

ontV on® 8
o "Tac a¢c ¢

The relation

+ K7) represents the dispersion relation

—[u® +nMuD] =0, (20)

ou) ou? oo | 9o
ar  PTac Y T T Tac
O o, @=2), w72 _
+K|— 3 [ + 5 (n;”7) | =0, (21)
8¢(2) i 0 (’Y - 2) 2
Kk @) 2| Z 0, (22
BC 26C |:TL + 2 (ne ) 07 ( )
8¢(2) i 0 (’Y - 2) 2
e C N G ) A CO I NN
fe = Kige o+ U2y —o, 9
0=a.mn? — ng2) - apng). (24)

Now, combining (20-24) we deduce a K-dV equation
) 3p(1)
where the value of A and B are given by
(V2 — K})? [3V2 + K{(a—2)
2V, (V2 - K7)°

+ ApM) =0, (25)

A=
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— (e, —
+ (’y )(a2 ap) , (26)
K
(V; — K9
B=-—-*t—" 2
2V, 27)
The solitary wave solution of (25) is
1 = 2 (€
¢ = pmsech” | <, (28)

where the special coordinate, & = ( —uo7, the amplitude,
bm = 3ug/A, and the width, A = (4B /ug)'/?.

IV. DERIVATION OF MODIFIED K-DV
EQUATION

The K-dV equation is the result of the second order cal-
culation of the €. From the third order calculation, which
utilizes another set of stretched coordinate, a modified k-
dV (mk-dV) equation is obtained to describe the nonlin-
ear evolution near this critical parameter. The stretched
coordinates for mk-dV equation is

¢ =€z —Vypt), (29)
T =¢ét, (30)

By using and , we find the same values of u( ), ngl), ngl),

ng), and V,,, as like as that of the k-dV. To the next
higher order of e, we obtain a set of equations, which
after using the values of u(l), gl) ngl), ng,l), and Vj,,can

be simplified as

p2 2 Ve KO e 60
SR Vi - K
V,K! 2
u§2)= P 1: 3(¢(1))
(V7 — K1)
V3+ VKl (a—2 (2)
PRIl =2) g2y T gy
2(V2 N V2 - K|
p
1 -2 2
@ _ 7 (1)
o — S @) (33)
1 -2 2
@ 2 _ 7 (1)
1 2
p?) = §A(¢(1)) , (35)
B+ Ki(@=2) (7~ 2)(a - a)
= 3 - N2 ) (36)
(V2 - K}) (K3)

To next higher order in €, we obtain a set of equations:

antV an® 9
o aC +a—<[ug3>+ng1)ug2>

+nPu] =0, (37)
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oul L ow? | ouu? | 06
ar " Tac o " Tac
+Kl%[n§3 +( n<1>n<2>)]
Jla=2@=3) o 20n"
Do Bmpdl_y
o) )
oc ~ o
1+ (=) + B0 00|~ 0,30)
d¢p® 0
a¢

{ngs) + (7 - 2)(nPn®) + %6(7_3)(112”)1 = 0,(40)

92
o¢?

—a.n® + n§3) + apngj) =0. (41)

Now combining (37-41), and using the values of ngl), 52),

O R )

1061y

where I' =

(K{)(KY), A= Ap can be expressed as

Ay = (goi)a s |ae — (ae)e] = sAqe, (46)

where |a, — (a.).| is a dimensionless parameter, and can
be taken as the expansion parameter €, i.e. |a, —(ae).| =
€, and where

4 — K3(—2 4 v+ 6a. — 6ay)
“ (K3)?
! _ 2
31+ a)Ki(ae — ap) (47)
(K3)?

and s = 1 for a, > (ae). and s = —1 for a, < (ae)e-
for a, = (a.)., we can express p2) as

So,

1
P = Ssedap)’ (48)
This means that for a, # (a.)e, p® must be included
in the third order Poisson’s equation. To the next higher
order in €, we obtain the third set of equations:

, Ne, Mg and p?, we obtain of the
form: (1) (3)
Ons_ _yOns L 0 0@) 4 (0,
M) 12000 PP 0 1 or P ac actt s
or ¢ aC acy (42) +nPuM] =0, (49)
where 8u§1) v 8u£3) Bu(l) (2) N g
or Po¢ ¢ a¢
15V + 12V2K! + 18V2K! (a — 2) + 3(K!)(a — 2)? 5
o= |22 v P MO B e
Q(Vp2 _ K{)f’ +K ¢ n; + (« )(n; 'ni™)
K’ - 2 - 2 z - e - 2 — 2 6 (,1
K==y =m0 a)] PR O PR/
2(V2 - KY) 2K}, 2 ¢
2 93 0
b (V= K1) (44) o 58_(,“ ) + (v = 2)(n{Mn?)
2V, '
_‘_(7_2)(7_3) (n(l))S] =0 (51)
Equation (42) is known as mK-dV equation. The sta- 6 ¢ ’
tionary localized solution of (42) is, therefore, directly ) Bl
given by aC Kéa—c [n1(03) + (’y — 2)(”21)715)2))
(=2 =3), 1)
o =g (£). (15) +#<”§ V=0 (52)
62 ¢)(1) (3)
where the amplitude ¢,, and the width A are given by a2 25Aa¢ =0. (53)
m=1/%and A=_—1_ =2
¢ ab Py T where p(3) = —aen£3) + n( ) 4 oy n( ). Now,combining

V. DERIVATION OF STANDARD GARDNER

EQUATION
It is obvious from (37) that A = 0 since ¢{') = 0. One
can find that A = 0 at its critical value a, = (), (which

is a solution of A = 0). So, for a, around its critical value

equations (31)-(35) and (48) (53), we obtain a equation
of the form:

a¢,(1) ¢,
or +bs A“(b 8(

¢(1)2 L) o)

sc i e =069

where a and b are same as before. Equation (54) is known
as standard Gardner (sG) equation. It is often called

() ~3K}, _ \/ST+8al—4 T —darT+9K,> n mixed mK-dV (mmK-dV) equation, because it contains

2(18(’(;(a )+2a(21((1’()1(za)(K1)) 2K )FalKy) both ¢V term of K-dV and ¢(V° term of mk-dV. Equa-

FPSE G tion (54) is valid for (a.) near its critical value (ae).. As
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(54) contains both ¢(*) and ¢(1)2 terms, it supports both
the SWs and DLs solution. It is important to note that

if we neglect the ¢(1)2 term, this equation reduces to
mK-dV equation, and to K-dV equation by using a lower
order stretching viz. ¢ = ¢'/?(x — Vpt), and 7 = €3t.

The exact analytical solution of (54) is not possible.
Therefore, we have numerically solved (54), and have
studied the effects of planar geometry TA GSs and DLs.
The stationary SW and SDL solution of the sG equa-
tion [i.e. (54)] is obtained by considering a moving frame
(moving with speed Uyp) £ = (—UpT, and imposing all the
appropriate boundary conditions for the SW and DL so-
lution, including o) — 0, dpM) /dé — 0, d>¢™) /de* — 0
at £ - —o00.These boundary conditions allow us to have
two solutions to express the sG equation [i.e. (54)], as
one is the stationary SW solution and another is DL so-
lution. The stationary SW solution of sG equation [i.e.
(54)] can be written as

1 1 1 1!
@ =] — - [ = — ——) cosh? <—>} , (85
¢ |:¢m2 (¢m2 ¢m1> 6 ( )
where ¢ is the width of the SWs. ¢,,1 2 and 0 are given
by

Pmiz = dm[LF4/1+ %] (56)
Vo= %, (57)

Up = %d)mm + gqum? (58)
5 = #1%5 (59)

T=3 (60)

Pm = 2 (61)

Now, the stationary DL solution of sG equation can be
written as

(1) _ &m £
oM = 5 {l-l-tanh(A)}, (62)

where A is the width of the DLs, and is given by

24

A==,
Pr.

(63)

VI. NUMERICAL ANALYSIS

It is clear from (62) and (63) that DLs exist if and
only if g < 0. It is obvious from figures 12 to 15 that
i > p which confirm us that the DLs are associated
with positive potential only. The parametric regimes for
the existence of the positive DLs are not bounded by the
lower and upper surface plot of u, and the DLs exist for
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FIG. 1: Showing the 2D graph for the relation between a.
and ay.
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FIG. 2: Showing the 2D graph for the critical value of a. with
respect to ¢,

parameters corresponding to any point in between two
(1o = 0) surface plots. It may be noted here that if we
would neglect the higher order nonlinear term [viz. the
third term of Gardner equation or the term containing
#®)], but would keep the lower order nonlinear term [viz.
the second term of Gardner equation or the term contain-
ing ¢(2)], we would obtain the solitary structures that are
due to the balance between nonlinearity (associated with
#? only) and dispersion [58]. On the other hand, in
our present work, we have kept both the terms contain-
ing ® and ¢, and have obtained the DL structures
which are formed due to the balance between the nonlin-
earity (associated with ¢(® and $()) and dispersion.

It may be added here that the dissipation (which is
usually responsible for the formation of the shock-like
structures [59, 60]) is not essential for the formation of
the SW and DL structures [61, 62]. It should be noted
here that in all these figures we have taken the values of
a. and ) as a fixed value.

From the first figure we have observed a 2D graphical
representation. In this figure a clear relation between a,
and oy, has been observed. It is pointed that the value of
ap slowly increases with the increasing value of a.. And
from the second figure we have got the clear critical value
o, in what range we have got the positive negative poten-
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FIG. 3: Showing the 2D graph for a, with ¢*).

FIG. 4: Showing the effect of ae. on SWs (potential structure)
for both e-i-p being non-relativistic degenerate when a. <

0.66.

FIG. 5: Showing the effect of a. on SWs (potential structure)
for i being non-relativistic degenerate and e-p being ultra-

relativistic degenerate when a. < 0.66.

106%

FIG. 6: Showing the effect of 4 on SWs (potential structure)
for both e-i-p being non-relativistic degenerate when a. <
0.66.

FIG. 7: Showing the effect of a. on SWs (potential structure)
for i being non-relativistic degenerate and e-p being ultra-
relativistic degenerate when a. < 0.66.

tial, ¢(1) structures. The third graphical representation
confirms us that there is no critical value of a;, for which
we may get the positive or negative or both type poten-
tial structures; ie; the potential structures do not depend
on the value of . In the figures 4-11 we have tried to
show the SWs profiles obtained from the stationary so-
lution of SWs for sG equation (55) due to the effect of
a. on the potential, ¢(!) for the case of electron-positron
being both non-relativistic and ultra-relativistic degen-
erate and ion being non-relativistic degenerate. And the
figures 12-15 represent the solitons obtainedfrom the sta-
tionary solution of DLs for sG equation (62) due to the
effect of e, on the potential, (*) for the both case of rel-
ativistic limit. It should be noted here that in all these
figures we have taken the values of a, and ug as a fixed
value.
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FIG. 8: Showing the effect of ae on SWs (potential structure)
for both e-i-p being non-relativistic degenerate when a. >
0.66.

FIG. 10: Showing the effect of u on SWs (potential structure)
for both e-i-p being non-relativistic degenerate when a. >
0.66.

FIG. 9: Showing the effect of a. on SWs (potential structure)
for i being non-relativistic degenerate and e-p being ultra-
relativistic degenerate when a. > 0.66.

By the careful observation on the figures 4-11 it has be-
come clear that the terms a, has an great effect on the po-
tential, ¢(') of SWs which are obtained from the station-
ary solution of SWs for sG equation (55). Because of the
critical value of a, we get both compressive and rarefac-
tive SWs profiles with the positive and negative potential.
Again potential, ¢(!) increases more rapidly for ion be-
ing non-relativistic degenerate and electron-positron be-
ing ultra-relativistic degenerate than for both electron-
positron-ion being non-relativistic degenerate. But we
get only positive potential, ¢(*), for the figures of DLs
(12-15) for both limits obtained from the solution of stan-
dard Gardner equation, whatever the value of «,, i.e it
does not depend on the value of alpha..

FIG. 11: Showing the effect of a on SWs (potential struc-
ture) for i being non-relativistic degenerate and e-p being
ultra-relativistic degenerate when a. > 0.66.

VII. DISCUSSION

We have considered an unmagnetized degenerate dense
plasma containing non-relativistic degenerate cold ions
fluid and both non-relativistic and ultra-relativistic de-
generate electrons and positrons fluid, and have exam-
ined the basic features of the electrostatic nonlinear
structures that are found to exist in such degenerate
dense plasma.

We have investigated the TA SWs and correspond-
ing the DLs in a plasma system (positron fluid, non-
relativistic and ultra-relativistic degenerate electrons and
non-relativistic degenerate cold ions), by deriving the sG
equation. The K-dV solitons and finite amplitude DLs
investigated earlier, are not valid for a, = (a.)., which
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FIG. 12: Showing the effect of a, on DLs (potential structure)
for e-i-p being non-relativistic degenerate when a. < 0.66.

FIG. 13: Showing the effect of @, on DLs (potential structure)
for i being non-relativistic degenerate and e-p being ultra-
relativistic degenerate when a. < 0.66.

vanishes the nonlinear coefficients of the K-dV equation.
In short, by observing figures 4-15 it has become clear

that

(i) small amplitude SWs with ¢(1) > 0, i.e. positive SWs

exists if A > 0,

(ii) small amplitude SWs with ¢(!) < 0, i.e.

SWs exists if A < 0, and

(iii) no SWs can exists around A = 0.

negative

(iv) The amplitude and width of SWs increase with p.
(v) With the increase of the phase speed of plasma
species density of ions, the amplitude of SWs does not

change significantly.

(vi) The potential of SWs always increases with a.,

FIG. 14: Showing the effect of a, on DLs (potential structure)
for e-i-p being non-relativistic degenerate when a. < 0.66.

FIG. 15: Showing the effect of a, on DLs (potential structure)
for i being non-relativistic degenerate and e-p being ultra-
relativistic degenerate when a. < 0.66.

but because of critical values of a., it changes polarity.

(vii) Only one types of polarity and have no corre-
sponding DLs solution (obtained from (62).

(viii) The width of positive DLs decreases with both
ae and ug (nearly negligible).

However, the TA SWs and DLs investigated in our
present work are valid for around a. = (ae).. The re-
sults, which have been obtained from this investigation
can be pinpointed as follows:

1. For such a degenerate plasma system, the poten-
tial for the case of ions being non relativistic limits
and electron-position being ultra relativistic limits
is greater than the electron-positron-ion being non
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relativistic limits.

2. The plasma system under consideration supports
the finite amplitude SWs and DLs, whose basic fea-
tures (polarity, amplitude, width, etc.) depend on
the degenerate ions and electron-positron-ion num-
ber densities.

3. SWs are shown to exist around a. = (a.)., and are
found to be different from the K-dV solitons, which
do not exist for around a, = (@,). and mK-dV soli-
tons which exist for around «, = (a.)., but have
only one types of polarity and have no correspond-
ing DL solution.

4. At ae = ()., negative SWs exist, whereas at o, >
(ae)c, positive SWs exist.

5. The magnitude of the amplitude of positive and
negative SWs increases with a., but increases with
Uug-

6. The DLs having large width we have found only
positive potential for both non relativistic and ultra
relativistic limits, no negative DLs are formed.

7. The magnitude of the amplitude of the DLs in-
creases with the increase of a., also increases with
the increase of uyg.

The electrostatic waves in an ultra-relativistic and non-
relativistic degenerate dense plasma, which is relevant to
interstellar compact objects like white dwarfs, have been
investigated. The results, which have been found from
this investigation, represent ion acoustic-type of electro-
static waves in which the restoring force comes from the
electron-positron degenerate pressure and inertia is pro-
vided by the ion mass density. Our studies of nonlin-
ear electrostatic structures in dense e-p-i plasmas with
degenerate electrons, ions and positrons are more gen-
eral. However, arbitrary amplitude TA SWs and DLs in
uniform /nonuniform three component degenerate plasma
with or without the effects of dust and external magnetic
field are also problems of recent interest for many space
and laboratory dusty plasma situations, but beyond the
scope of our present investigation. Although such plas-
mas cannot be produced in a laboratory, yet they are
gaining considerable attention of the researchers work-
ing on dense astrophysical plasmas and numerical simu-
lations.
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We have shown the existence of compressive (hump
shape) and rarefactive (dip shape) SWs with positive and
negative potential and DLs with only positive potential.
We have identified the basic features of potential for TA
SWs and DLs, which are found to exist beyond the K-
dV limit. It may be stressed here that the results of
this investigation should be useful for understanding the
nonlinear features of electrostatic disturbances in labo-
ratory plasma conditions. Our investigation would also
be useful to study the effects of degenerate pressure in
interstellar and space plasmas [63], particularly in stellar
polytropes [64], hadronic matter and quark-gluon plasma
[65], protoneutron stars [66], dark-matter halos [67] etc.
The electrostatic waves in an ultra-relativistic and non-
relativistic degenerate dense plasma, which is relevant to
interstellar compact objects like white dwarfs, have been
investigated. The results, which have been found from
this investigation, represent ion acoustic-type of electro-
static waves in which the restoring force comes from
the electron-positron-ion degenerate pressure and iner-
tia is provided by the ion mass density. We hope that
our present investigation will be helpful for understand-
ing the basic features of the localized electrostatic dis-
turbances in compact astrophysical objects (e.g. white
dwarfs, neutron stars, black hole, etc.). Further it can
be said that the analysis of shock structures, vortices,
double-layers etc. in a nonplanar geometry where the
degenerate pressure can play the significant role, are also
the problems of great importance but beyond the scope
of the present work.

To conclude, we propose that a new experiment may
be designed based on our results to observe such waves
and the effects of planar geometry on these waves in both
laboratory and space dusty plasma system. We have car-
ried out SWs and DLs by deriving the standard Gardner
equations for a plannar geometry in an unmagnetized
plasma system containing degenerate electron-positron
(non-relativistic or ultra relativistic limits) and degener-
ate ions being non-relativistic limit.
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